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This paper presents a linear-stability analysis for the transition from a steady, two-
dimensional thermocapillary convection in a liquid-metal layer to a periodic, three-
dimensional flow involving hydrothermal waves which propagate in the direction
normal to the plane of the base flow. There is a uniform magnetic field applied
parallel to the free surface in the plane of the base flow, and there is a linear
temperature gradient along the free surface in the base flow. The ratio of the layer’s
length to its depth, 2L, is large. The magnetic Reynolds number is small.

A key parameter is λ, the ratio of the large Hartmann number based on depth to
L. The value of λ increases as either the magnetic field strength is increased or L is
decreased. The results for very small values of λ agree with the results of a previous
treatment of this instability without a magnetic field. As λ is increased, the critical
Marangoni number and the wavenumber for the hydrothermal rolls both increase.
For large values of λ, the base flow and the hydrothermal waves are confined to a
free-surface layer with O(λ−1/2) dimensionless thickness.

1. Introduction
In the floating-zone process, a liquid bridge of molten semiconductor is held by

surface tension between a melting, cylindrical, polycrystalline feed rod and a coaxial,
solidifying, cylindrical single crystal. The increase of surface tension from the hottest
circumference around the free surface to the colder circumferences at the ends of the
crystal and feed rod drives a thermocapillary convection in the melt which is unsteady
for virtually all actual processes without a magnetic field. Elements called dopants
are added to the melt to give the crystal the desired electrical or optical properties.
The unsteady thermocapillary convection produces undesirable spatial oscillations
of the dopant concentration in the crystal, called striations. Hurle (1994) reviews
floating-zone semiconductor crystal growth.

In his seminal work, Pearson (1958) studied the onset of steady thermocapillary
convection in a quiescent fluid layer heated from below. When the heat flux at the
bottom of the layer exceeded a critical value, steady cellular convection developed in
the layer. In many industrial processes a temperature gradient exists along the free
surface which drives fluid from hot to cold regions along the free surface. For this
case, a quiescient base state does not exist since any temperature gradient along the
free surface produces a thermocapillary convection which is steady as long as the
temperature gradient is not too large. Smith & Davis (1983, hereafter referred to as
S & D) showed that when the Marangoni number exceeds a critical value, then the
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thermocapillary convection involves a new mode of instability called a hydrothermal
wave which travels at some oblique angle relative to the steady base flow. The angle
of propagation of the hydrothermal wave depends on the Prandtl number. Davis
(1987) reviewed advances in the study of thermocapillary instabilities to that date.
Velten, Schwabe & Scharmann (1991) investigated the onset of periodic instabilities
of thermocapillary convection in a liquid bridge for various Prandtl numbers. In their
experiments, they reported seeing hydrothermal waves as predicted by S & D. Riley
& Neitzel (1998) recently presented experimental verification of the hydrothermal
waves predicted by S & D for low Prandtl number and no magnetic field.

There have been recent advances in the fundamental understanding of thermocap-
illary instabilities. Shen et al. (1990) resolved thermocapillary-driven meridional dis-
turbances in a cylindrical half-zone. In their study, they accurately predict the onset of
unsteady thermocapillary convection using energy-stability methods for high Prandtl
number fluids. In their direct numerical simulations, Mundrane & Zebib (1992) add
the complexity of buoyant convection to the thermocapillary convection in a slot.
Experiments performed by Gillon & Homsy (1996) confirm the numerical predictions
of Mundrane & Zebib (1993). Laser-Doppler velocimetry experiments performed by
Saedeleer et al. (1996) indicate the existence of an intermediate flow structure that
precedes the development of hydrothermal waves. The structure was reported to be
in the form of cells with their axes perpendicular to the temperature gradient which
acts along the free surface. Braunsfurth & Homsy (1997) have extended previous ex-
perimental studies of combined buoyant–thermocapillary convection in cavities and
note a novel oscillatory flow at larger Marangoni numbers. Mercier & Normand
(1996) have also investigated combined thermocapillary–buoyancy-driven flows. Re-
cently, Zebib (1996) added the complication of system rotation to thermocapillary
instabilities.

For most molten semiconductors, the Prandtl number is less than 0.1, and the
electrical conductivity is comparable to that of mercury. If a magnet or solenoid
outside the crystal-growth furnace produces a steady magnetic field in the melt, then
the electromagnetic (EM) body force can be used to eliminate all unsteadiness in
the melt motion and to tailor the residual steady motion in order to optimize the
dopant distribution and other crystal properties (Series & Hurle 1991). Robertson
& O’Connor (1986) and Croll, Dold & Benz (1994) grew silicon crystals with 0.5 T
uniform axial magnetic fields which were parallel to the common centreline of the
crystal, floating zone and feed rod. Each crystal had a striation-free central core with
greatly reduced striations near the crystal’s periphery.

Baumgartl et al. (1990) and Rupp et al. (1991) presented numerical solutions for
the unsteady, three-dimensional thermocapillary convection in a cylindrical floating
zone with a uniform axial magnetic field parallel to the free surface. They presented
plots of the critical Marangoni number for the transition to unsteady motion versus
Hartmann number for the Prandtl numbers of molten silicon and gallium arsenide.
Unfortunately, as they acknowledged, they erroneously set the static electric field
equal to zero in Ohm’s law. As a consequence, Maxwell’s equations are not satisfied,
electric charge is not conserved, and there is a non-zero normal electric current at
the free surface in their numerical solutions. S & D showed that the transition from
steady to unsteady thermocapillary convection for low Prandtl number fluids without
a magnetic field involves hydrothermal waves which would propagate in a direction
nearly orthogonal to the base flow. In the floating-zone geometry, a nearly cylindrical
liquid bridge develops, and the free surface is essentially that of a cylinder. For
this geometry, temperature gradients along the free surface set up a steady, two-
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dimensional base flow in a meridional plane, and the instability is a hydrothermal
wave travelling in the azimuthal direction, i.e. one travelling in a direction orthogonal
to the base state. In reality, the electrically insulating atmosphere at the free surface
blocks the radial electric current which would provide the EM body force opposing
the azimuthal velocity at the free surface in the hydrothermal waves. In the numerical
solutions of Baumgartl et al. (1990) and Rupp et al. (1991), there is an erroneous EM
body force opposing azimuthal free-surface velocities, so that their results probably
overestimate the stabilizing effects of a magnetic field parallel to the free surface.

With large magnetic flux densities, the thermocapillary convection is confined to a
very thin boundary layer adjacent to the free surface of the melt. In this boundary
layer, curvature effects are negligible (Morthland & Walker 1997), allowing one to
use thin fluid layers to model the magnetic damping of thermocapillary convection
in floating zones. Wilson (1993) considered the magnetic damping of the onset of
steady and unsteady thermocapillary convection in a quiescent layer of an electrically
conducting fluid resting on an infinite wall with a uniform vertical temperature
gradient and with a uniform magnetic field which was perpendicular to the free
surface and wall. In a later study, Wilson (1994) extended his analysis to a non-
isothermal wall with heating from below. Both studies included the effects of a
deformable free surface. Kaddame & Lebon (1993) also demonstrated the stabilizing
effects of a vertical magnetic field on oscillatory instabilities. Wilson showed that
if the free surface is allowed to deform, then the stability characteristics of the
thermocapillary convection depend on the thermal conditions of the free surface and
the influence of gravity waves. In particular, there are always unstable modes present
no matter how large the magnetic field is. As an extension to the work of Pearson
(1958), Maekawa & Tanasawa (1988) and Wilson (1994), Thess & Nitschke (1995)
apply a magnetic field in a direction orthogonal to the plane of the free surface of
a fluid layer. They provide physical insight into the structure of the instabilities in
magnetically damped thermocapillary flows by applying established principles found
in liquid-metal magnetohydrodynamics.

While Wilson considered a magnetic field oriented in a direction perpendicular to
the plane of the free surface, a recent study by Priede & Gerbeth (1997) treated the
magnetic stabilization of hydrothermal waves with a magnetic field which is parallel
to the free surface and which is oriented at an arbitrary angle to the plane of the base
flow. In an earlier paper Priede & Gerbeth (1995) treated the effects of a magnetic
field which is parallel to the free surface and perpendicular to the plane of the base
flow. Both the study by Priede & Gerbeth (1997) and the present study are extensions
of the study by S & D which considered an infinite layer without a magnetic field. In
the study by Priede & Gerbeth (1997), the fluid layer is still infinite, while the magnetic
field strength and its orientation to the base flow are arbitrary. We restrict our study
to strong magnetic fields which are parallel to the base flow, and we consider the
effect of bounding the layer by endwalls which are perpendicular to the plane of the
base flow.

This paper treats the thermocapillary convection in a long layer of a thermally
and electrically conducting liquid, as shown in figure 1. There is an electrically and
thermally insulating wall at z∗ = 0, an electrically and thermally insulating inviscid
atmosphere at z∗ = d, electrically insulating isothermal walls with T ∗ = ∓bdL at
x∗ = ±Ld, and no boundaries or changes in geometry in the y∗-direction. Here x∗,
y∗ and z∗ are Cartesian coordinates with the unit vectors êx, êy and êz , while an
asterisk denotes a dimensional variable, and T ∗ is the deviation of the dimensional
temperature from its average value at x∗ = 0 and z∗ = d. The deformation of the free
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Figure 1. Thermocapillary convection in a long liquid layer with a uniform,
steady magnetic field Bêx.

surface involves a balance between the surface tension times the surface curvature and
the local pressure or normal stress. Since the characteristic value of the axial pressure
gradient here is (−dΓ/dT ∗)b/d, the deformation of the free surface is negligible if
Γ0 � (−dΓ/dT ∗)bL, where Γ is the surface tension with a characteristic value Γ0.
This condition also guarantees that the difference between the values of the surface
tension at the ends is much smaller than Γ0. We plan to treat the case of a deformable
free surface in a future paper. We also assume that all the liquids properties are
uniform except its surface tension Γ at the free surface, which decreases linearly with
increasing T ∗. There is an externally applied, uniform, steady magnetic field, Bêx,
where B is the magnetic flux density.

Following S & D, we normalize the coordinates with d, the velocity u∗ with the
characteristic velocity

U =
bd

µ

(
− dΓ

dT ∗

)
, (1.1)

the time t∗ with d/U, the pressure p∗ with b(−dΓ/dT ∗), and the temperature T ∗
with bd, where µ is the liquid’s absolute viscosity. We also normalize the electric
current density j∗ with σUB and the electric potential function φ∗ (voltage) with
UBd, where σ is the liquid’s electrical conductivity. In addition to the externally
applied magnetic field, there is an ‘induced’ magnetic field produced by the electric
currents in the liquid. The characteristic ratio of the induced to applied magnetic fields
is the magnetic Reynolds number, Rm = µpσUd, where µp is the liquid’s magnetic
permeability. In his classic study of hydrodynamic instabilities with magnetic fields,
Chandrasekhar (1961) often assumed that either Rm � 1 or Rm = O(1) because he
was concerned with astrophysical flows. For semiconductor crystal growth from a
melt, the value of Rm is always very small, so that we assume that Rm � 1, and we
neglect the induced magnetic field.

The equations governing the dimensionless variables are

R

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+Ha2j × êx + ∇2u, (1.2a)

∇ · u = 0, ∇ · j = 0, (1.2b,c)

j = −∇φ+ u× êx, (1.2d )

M

[
∂T

∂t
+ u · ∇T

]
= ∇2T , (1.2e)

where

R =
ρUd

µ
, Ha = Bd

(
σ

µ

)1/2

, M = Pr R, P r =
µcp

κ
(1.3a–d )
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are the Reynolds, Hartmann, Marangoni and Prandtl numbers, respectively, while
ρ, cp and κ are the liquid’s density, specific heat and thermal conductivity. The Navier–
Stokes equation (1.2a) includes the electromagnetic (EM) body force due to j and
the dimensionless magnetic field êx. The solubility condition (1.2c) guarantees the
existence of a solution of Maxwell’s equations for the O(Rm) induced magnetic field
which is ignored here. Ohm’s law (1.2d) includes the static electric field −∇φ due
to electric charges and the induced electric field due to the motion across magnetic
field lines. Joule heating and viscous dissipation are neglected in the conservation of
internal energy (1.2e) because both are negligible compared to the heat transfer from
the heater through the melt to the crystal in any crystal-growth process (Langlois &
Lee 1983). The boundary conditions are

u = 0, jz = 0,
∂T

∂z
= 0, at z = 0, (1.4a–c)

∂u

∂z
= −∂T

∂x
,

∂v

∂z
= −∂T

∂y
, w = 0, jz = 0,

∂T

∂z
= 0, at z = 1, (1.5a–e)

u = 0, jx = 0, T = ∓L, at x = ±L, (1.6a–c)

where u = uêx + vêy + wêz . In the floating-zone (FZ) process, the melt forms a
roughly cylindrical liquid bridge between a melting feed rod and a solidifying
crystal. The liquid–solid interfaces are isothermal, while the electrical conductivity
of the solid semiconductor is typically one-twentieth that of the liquid. These in-
terfaces correspond qualitatively to the electrically insulating, isothermal walls at
x = ±L.

S & D presented a linear stability analysis for an infinitely long liquid layer (L = ∞)
without a magnetic field (Ha = 0). For Ha = 0, end effects are negligible and the
infinite-layer solutions apply as long as L� 1 (Sen & Davis 1982). From S & D,

u =
(

3
4
z2 − 1

2
z
)
êx + εu′(z) exp[i(kxx+ kyy − αt)], (1.7a)

T = −x+
M

48
(4z3 − 3z4 − 1) + εT ′(z) exp[i(kxx+ kyy − αt)], (1.7b)

where O(ε2) terms are neglected, u′ and T ′ are complex modal functions, kx and ky are
real wavenumbers, α = αr + iαi, αr is the circular frequency, and αi is the attenuation
(αi < 0) or amplification (αi > 0) factor. S & D found that the instability involves
plane ‘hydrothermal’ waves propagating at angles of ±θ to the (x, z)-plane, where
θ = arctan(ky/kx). These hydrothermal waves involve rolls with a phase shift between
the perturbation velocity and temperature. A hot line along the free surface drives a
flow which brings cold liquid to this line, but inertia causes the flow to continue after
convective heat transfer has eliminated the local free-surface temperature elevation.
The continuing flow creates a cold line which first stops the flow and then creates
a reverse flow that brings hot fluid to this line. This process continues, thereby
establishing the oscillatory motion (Smith 1986).

As M is increased from zero for a fixed value of Pr, one must search over all
possible pairs of values of kx and ky in order to find that for which the first non-
negative value of αi occurs. For this critical mode, S & D found that the critical
Marangoni number Mc, the propagation angle θ, the dimensionless period 2π/αr
and the dimensionless wavelength 2π(k2

x + k2
y)
−1/2 depend on the value of Pr. Since

Pr < 0.1 for virtually all molten semiconductors, we only discuss the results in figures
17 and 18 of S & D for this range. For Pr < 0.1, θ > 75◦, and the Mc for the correct
critical combination of kx and ky is only slightly less than the critical Marangoni
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number Mc0 for kx = 0, i.e. for hydrothermal waves propagating in the y-direction
with all perturbation variables independent of x. The value of (Mc0−Mc) is small for
Pr = 0.1 and decreases rapidly as Pr is decreased.

As long as L = ∞, the addition of a magnetic field Bêx provides EM damping
of a perturbation with kx 6= 0, but has no effect on a perturbation with kx = 0
(Chandrasekhar 1961). The curl of (1.2d) with (1.2b) gives

∇× j =
∂u

∂x
. (1.8)

If u is independent of x, then the solution of (1.2c) and (1.8) is j = 0, so that ∇φ =
u× êx. As long as the velocity does not vary along magnetic field lines, a static electric
field develops which exactly cancels the induced electric field, so that there are no
electric currents and no EM body forces. Priede & Gerbeth (1997) recently presented
a linear stability analysis for this problem with L = ∞ and with an arbitrary value
of Ha. Their results for Pr = 0.01 and Pr = 0.03 show that, as Ha is increased, kx
goes to zero, θ increases to 90◦, and Mc increases to Mc0. Once kx reaches zero at
approximately Ha = 500, further increases in Ha have no effect on the instability.
Here we assume that Ha� 1, so that kx = 0 for the critical mode for L = ∞, and all
variables have the appropriate symmetry about the x = 0 plane for L =O(Ha). Priede
& Gerbeth (1997) also consider magnetic fields at an angle αB to the (x, z)-plane.
They showed that, as Ha is increased, θ approaches (αB + 90◦), i.e. the vorticity in the
plane hydrothermal waves becomes aligned with the magnetic field. We only consider
magnetic fields which are parallel to the (x, z)-plane, since this corresponds to the FZ
process with an axial magnetic field.

The effects of the magnetic field become significant when L is finite. As u decreases
to zero at x = ±L, the local difference between ∇φ and u× êx drives electric currents
whose circuits and EM body forces may extend far from the ends. If a hydrothermal
wave for L = ∞ and kx = 0 is a generator on open-circuit, then the boundary
layers at x = ±L provide paths for leakage currents. If the magnetic field is strong
(Ha � 1), then even remote ends for L � 1 can lead to leakage currents with O(1)
EM damping. Here we present asymptotic solutions for L� 1 and Ha� 1 with the
constraint that λ = Ha/L is an O(1) parameter. The solutions for small values of λ
should correspond to the solutions of S & D for kx = 0, since a magnetic field with
Ha > 500 will align the hydrothermal waves for L = ∞ (Priede & Gerbeth 1997). We
can achieve a smooth transition from the S & D solutions for kx = 0 either by fixing
a large value of L and increasing the magnetic field strength or by applying a fixed,
strong magnetic field and decreasing L from infinity.

2. Base flow
For the normal mode analysis in (1.7) with kx = 0, the eigenvalues occur in pairs,

(±αr + iαi), corresponding to a pair of identical hydrothermal waves, propagating
with the same phase velocity (αr/ky) in the ±y-directions. For each pair of modes,
there is an infinite number of solutions corresponding to an arbitrary ratio of the
amplitudes in the superposition of the two waves propagating in opposite directions.
With no loss of generality, we can make the solution unique for each pair of modes
by considering the superposition with equal amplitudes, leading to a standing wave.
While the standing wave does not propagate, it has the same circular frequency αr
for each wavenumber ky as the pair of propagating waves, while the non-moving
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wave pattern is identical to the moving wave pattern in either propagating wave.
The equivalence of the standing wave to the propagating waves is also true for finite
values of L, as long as the perturbation variables have the appropriate symmetries
about x = 0, and the critical modes always have these symmetries for Ha > 500 and
Pr 6 0.1 (Priede & Gerbeth 1997). For u, w, p and jy , we introduce the form

u = ū(x, z) + εu′(x, z, t) cos(kyy), (2.1a)

while

T = −x+ T̄ (x, z) + εT ′(x, z, t) cos(kyy); (2.1b)

for v, φ, jx and jz , we introduce the form

v = εv′(x, z, t) sin(kyy). (2.1c)

The overbars and primes denote the base-flow and linear-perturbation variables,
respectively. The form (2.1) does not exclude oblique waves. For an infinite length, the
direction of the critical plane wave is determined by searching over all combinations
of kx and ky in (1.7). For a finite length, all possible x variations are included in
the modal functions such as u′(x, z, t) in (2.1). If the critical mode for a finite length
involves the equivalent of an oblique wave with kx 6= 0 for an infinite length, then
the modal functions in (2.1) would not be even functions of x. If the modal functions
in (2.1) are all symmetric about the x = 0 plane, then the critical mode involves the
finite-length equivalent of a plane wave propagating at right angles to the plane of the
base flow, but the structure of this wave is three-dimensional since end effects extend
over the entire fluid layer for L = O(Ha). For the base flow, (1.2) and (1.4)–(1.6)
become

R

[
ū
∂ū

∂x
+ w̄

∂ū

∂z

]
= −∂p̄

∂x
+
∂2ū

∂x2
+
∂2ū

∂z2
, (2.2a)

R

[
ū
∂w̄

∂x
+ w̄

∂w̄

∂z

]
= −∂p̄

∂z
−Ha2j̄y +

∂2w̄

∂x2
+
∂2w̄

∂z2
, (2.2b)

∂ū

∂x
+
∂w̄

∂z
= 0, j̄y = w̄, (2.2c,d )

M

[
ū

(
−1 +

∂T̄

∂x

)
+ w̄

∂T̄

∂z

]
=
∂2T̄

∂x2
+
∂2T̄

∂z2
, (2.2e)

ū = 0, w̄ = 0,
∂T̄

∂z
= 0, at z = 0, (2.3a–c)

∂ū

∂z
= 1− ∂T̄

∂x
, w̄ = 0,

∂T̄

∂z
= 0, at z = 1, (2.3d–f )

ū = 0, w̄ = 0, T̄ = 0, at x = ±L. (2.3g–i )

For Ha � 1 and L = Ha/λ, where λ is an O(1) parameter, the liquid region can
be divided into: (i) a central core region where ∂/∂x = O(Ha−1), and (ii) Hartmann
layers with an O(Ha−1) thickness adjacent to the ends at x = ±L. For the core we
introduce the scale compression X = x/L = λx/Ha and the asymptotic expansions

ū = uc(X, z) + O(Ha−1), w̄ = Ha−1wc(X, z) + O(Ha−2), (2.4a,b)

p̄ = Hapc(X, z) + O(1), T̄ = Tc(X, z) + O(Ha−1). (2.4c,d )
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For the core, the leading-order terms in (2.2) are

0 = −λ∂pc
∂X

+
∂2uc

∂z2
, 0 = −∂pc

∂z
− wc, (2.5a,b)

λ
∂uc

∂X
+
∂wc

∂z
= 0, −Muc =

∂2Tc

∂z2
. (2.5c,d )

We introduce a stream function ψc(X, z) and another integration function Fc(X, z) in
order to satisfy (2.5c) and (2.5b), respectively,

uc =
∂ψc

∂z
, wc = −λ∂ψc

∂X
, (2.6a,b)

ψc =
∂Fc

∂z
, pc = λ

∂Fc

∂X
. (2.6c,d )

Equations (2.5a), (2.5d) and (2.3a–f ) become

∂4Fc

∂z4
= λ2 ∂

2Fc

∂X2
,

∂2Tc

∂z2
= −M∂2Fc

∂z2
, (2.7a,b)

∂Fc

∂z
= 0,

∂2Fc

∂z2
= 0,

∂Tc

∂z
= 0, at z = 0, (2.8a–c)

∂Fc

∂z
= 0,

∂3Fc

∂z3
= 1,

∂Tc

∂z
= 0, at z = 1. (2.8d–f )

The Hartmann layers match any values of the O(Ha−1) w̄ in the core, while the
jumps in ū and T̄ across the Hartmann layers are O(Ha−2) and O(Ha−4), respectively
(Walker, Ludford & Hunt 1972). Therefore the appropriate boundary conditions on
the core variables are

uc = 0, Tc = 0, at X = ±1. (2.9a,b)

Eliminating arbitrary additive constants in pc and Fc, (2.9a) becomes

Fc = 0, at X = ±1. (2.10)

The separation-of-variables solution for Fc is

Fc =

∞∑
n=0

An cos
[(
n+ 1

2

)
πX
] {[sinh(γn) cos(γn)− cosh(γn) sin(γn)]

× [cosh(γnz) sin(γnz)− sinh(γnz) cos(γnz)]

−2 sinh(γn) sin(γn) cosh(γnz) cos(γnz)}, (2.11a)

An = (−1)nπ−1
(
n+ 1

2

)−1
γ−3
n [sinh(2γn)− sin(2γn)]

−1 , (2.11b)

γn = 1
2

[λπ(2n+ 1)]1/2 . (2.11c)

This solution for the base flow in the core parallels the separation-of-variables
solutions for magnetohydrodynamic flows in rectangular ducts, which were presented
by Hunt (1965). The advantage of this solution is the exponential behaviour in z,
which leads to improved convergence of the series as the value of λ is increased. For
λ � 1, the present core is split into a stagnant region and a free-surface layer with
an O(λ−1/2) thickness. The solution (2.11) automatically becomes the solution for the
free-surface layer, when we introduce ζ = λ1/2(z − 1), let λ → ∞ and neglect terms
with exp(−2γn). Because of the exponential behaviour in z and the behaviour with
λ, a few hundred terms or less in the truncated series were required for acceptable
convergence.
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Figure 2. Base-flow axial velocity uc and temperature Tc/M versus z at X = 0 (i) for λ 6 λ̄, which

are identical to the results of S & D, where λ̄ = 2 and (ii) λ = 6, 20, 50, 100 and 200. (a) uc(0, z),
(b) Tc(0, z)/M.

With (2.7b), (2.8a) and (2.8d), (2.8c) and (2.8f ) are redundant. Following S & D,
we add a very small heat transfer coefficient between the free surface and a parallel
surface with dimensionless temperature T = −x. Then integrating (2.7b) twice and
with these boundary conditions gives

Tc(X, z) = M [Fc(X, 1)− Fc(X, z)] . (2.12)

Plots of the base-flow axial velocity uc and temperature Tc at X = 0 for six
values of λ are presented in figure 2. For λ 6 λ̄, where λ̄ = 2, uc(0, z) and Tc(0, z)
are essentially identical to the base-flow values of S & D, which are given by the
polynomials in (1.7). The curves for λ 6 λ̄ coincide with the S & D curves in figure
2. The circuit for the axial flows in the ±x-directions must be completed by vertical
flows near the ends at x = ±L. There is no EM body force opposing uc, but there
is a strong EM body force opposing wc. As long as L > Ha/2, the opposition to
vertical flows near x = ±L is too weak to prevent the spread of the flow over the
entire depth and the realization of the S & D profiles for L = ∞ near x = 0. Priede
& Gerbeth (1997) reached the same conclusion. As L is decreased from Ha/2, the
EM body force opposing wc becomes a major addition to the viscous opposition to
the flow, as assumed in (1.1), and prevents the spread of the flow away from the free
surface. For L = O(1), the thermocapillary convection is confined to a free-surface
layer with an O(Ha−1/2) thickness, and there is no flow in the region below this layer
to all orders in Ha (Morthland & Walker 1997). The free-surface layer is illustrated
by the streamlines for λ = 200 and X > 0, which are plotted in figure 3(b), and is
contrasted with the streamlines for λ = 1 (figure 3a). With the flow confined to a thin
layer and with the same driving force at the free surface, the velocities decrease as λ
is increased, and the values of Tc due to convection of the base temperature T̄ = −x
also decrease. As soon as ∂uc/∂z is essentially zero at z = 0, the bottom wall ceases
to play any role, and we expect the solution to correspond to a free-surface layer
with an O(λ−1/2) thickness. Indeed, for λ > 20, the maximum free-surface velocity
uc(0, 1) = 0.62λ−1/2, the minimum value of the stream function ψcmin = −0.24λ−1, and
the temperature change outside the free-surface layer Tc(0, 0) = −0.43λ−3/2. We have
computed these scalings from the numerical results. For the case of large λ, there
exists a well-defined boundary-layer flow of O(λ−1/2) thickness adjacent to the free
surface (Morthland & Walker 1997). In a future paper, we plan to treat the stability
of this boundary-layer flow.
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Figure 3. Streamlines for the core base flow for (a) λ = 1 and (b) λ = 200. Hartmann layers match
the non-zero values of wc at X = ±1.

3. Instabilities
We introduce (2.1) into (1.2) and neglect O(ε2) terms,

R

[
∂u′

∂t
+ ū

∂u′

∂x
+
∂ū

∂x
u′ + w̄

∂u′

∂z
+
∂ū

∂z
w′
]

= −∂p
′

∂x
+ ∇2u′, (3.1a)

R

[
∂v′

∂t
+ ū

∂v′

∂x
+ w̄

∂v′

∂z

]
= kyp

′ +Ha2j ′z + ∇2v′, (3.1b)

R

[
∂w′

∂t
+ ū

∂w′

∂x
+
∂w̄

∂x
u′ + w̄

∂w′

∂z
+
∂w̄

∂z
w′
]

= −∂p
′

∂z
−Ha2j ′y + ∇2w′, (3.1c)

∂u′

∂x
+ kyv

′ +
∂w′

∂z
= 0,

∂j ′x
∂x
− kyj ′y +

∂j ′z
∂z

= 0, (3.1d,e)

j ′x = −∂φ
′

∂x
, j ′y = −kyφ′ + w′, j ′z = −∂φ

′

∂z
− v′, (3.1f–h)

M

[
∂T ′

∂t
+ ū

∂T ′

∂x
+

(
−1 +

∂T̄

∂x

)
u′ + w̄

∂T ′

∂z
+
∂T̄

∂z
w′
]

= ∇2T ′. (3.1i )

where now

∇2 =
∂2

∂x2
+

∂2

∂z2
− k2

y. (3.1j )

If the leading-order terms in the asymptotic expansions of (3.1d) and (3.1e) are
used, this leads to a redundant set of equations. Consequently, two terms in the
asymptotic expansions of (3.1d) and (3.1e) are needed in order to satisfy uniqueness.
We can avoid sorting orders if we replace these equations with two equivalent ones.
Equation (3.1e) is replaced by an axial vorticity equation. Combining (3.1e), (3.1f ),
(3.1g) and (3.1h), we find that the axial vorticity is related to the electric potential
function,

∂v′

∂z
+ kyw

′ = −∇2φ′. (3.2)

In the discussion of (1.8), we noted that a vortex aligned with a magnetic field
produces a voltage distribution so that ∇φ cancels or nearly cancels u × êx, e.g. low
voltage at the centre of a vortex and high voltage at its periphery produce a radial
electric field to balance u × êx. We solve (3.1b) and (3.1c) for j ′z and j ′y , respectively,
we introduce these expressions and (3.1f ) into (3.1e), and we use (3.2) for the axial
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vorticity in order to obtain the equation to replace (3.1e),

R

[
∂

∂t
∇2φ′ + ū

∂

∂x
∇2φ′ + w̄

∂

∂z
∇2φ′ +

∂w̄

∂z
∇2φ′ − ky ∂w̄

∂x
u′ − ∂ū

∂z

∂v′

∂x

]
= −Ha2 ∂

2φ′

∂x2
+ ∇4φ′. (3.3)

The EM damping of vorticity aligned with the magnetic field arises because the
vorticity goes to zero across each Hartmann layer, so that the locally unbalanced
voltage variation drives electric currents inside each Hartmann layer. The circuit for
these Hartmann-layer currents must be completed through the core, producing the
EM damping in the core. With symmetric axial vorticity, the values of jx = −∂φ/∂x
between the Hartmann layers and core have opposite signs at x = ±L. The ∂2φ′/∂x2

in (3.3) represents the fringing of the Hartmann-layer currents through the core and
the associated EM damping of the axial vorticity.

It turns out that the axial velocity gradient ∂u′/∂x is much smaller than the other
two terms in (3.1d), but it is still very important. Therefore we derive an axial velocity
gradient equation to replace (3.1d). We introduce our expressions for j ′z and j ′y from
(3.1b) and (3.1c) into (3.1h) and (3.1g), respectively, and we introduce the resultant
expressions for v′ and w′ into (3.1),

R

[
∂2u′

∂x∂t
+ ū

∂2u′

∂x2
+ w̄

∂2u′

∂x∂z
− ∂ū

∂z

∂w′

∂x
− ∂2w̄

∂x∂z
u′ − ∂w̄

∂x

∂u′

∂z
− 2

∂w̄

∂z

∂w′

∂z
− ∂2w̄

∂z2
w′
]

= −Ha2 ∂u
′

∂x
+

(
∂2p′

∂z2
− k2

yp
′
)

+ ∇2

(
∂u′

∂x

)
. (3.4)

The boundary conditions are

u′ = 0, v′ = 0, w′ = 0, j ′z = 0,
∂T ′

∂z
= 0, at z = 0, (3.5a–e)

∂u′

∂z
= −∂T

′

∂x
,

∂v′

∂z
= kyT

′, w′ = 0, j ′z = 0,
∂T ′

∂z
= 0, at z = 1, (3.6a–e)

u′ = 0, v′ = 0, w′ = 0, j ′x = 0, T ′ = 0, at x = ±L. (3.7a–e)

For the core, we introduce the same axial-scale compression and the same base-
flow asymptotic expansions (2.4). We choose ε as the characteristic magnitude of the
perturbation velocity in the core, so that the asymptotic expansions for u′, v′, w′, φ′,
and T ′ in the core have the form

u′ = u1(X, z, t) + O(Ha−1), (3.8a)

and those for j ′x, j ′y and j ′z have the form

j ′x = Ha−1jx1(X, z, t) + O(Ha−2), (3.8b)

while

p′ = Hap1(X, z, t) + O(1). (3.8c)

The leading-order terms in the linearized Navier–Stokes equations (3.1a–c) are

R

[
∂u1

∂t
+
∂uc

∂z
w1

]
= −λ∂p1

∂X
+ ∇2u1, (3.9a)

jz1 = −kyp1, jy1 = −∂p1

∂z
, (3.9b,c)
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where now

∇2 =
∂2

∂z2
− k2

y. (3.9d )

The leading-order terms in Ohm’s law (3.1f–h) and the linearized internal-energy
equation (3.1i) are

jx1 = −λ∂φ1

∂X
, w1 = kyφ1, v1 = −∂φ1

∂z
(3.10a–c)

M

[
∂T1

∂t
− u1 +

∂Tc

∂z
w1

]
= ∇2T1. (3.10d )

The expressions (3.10b) and (3.10c) from Ohm’s law automatically satisfy the O(1)
terms in (3.1d) without providing an equation for the O(Ha−1) ∂u′/∂x. Similarly
the expressions (3.9b) and (3.9c) from the Navier–Stokes equations automatically
satisfy the O(Ha−1) terms in (3.1e) without providing an equation for the O(Ha−2)
∂j ′x/∂x = −∂2φ′/∂x2. The leading-order terms in (3.3) and (3.4) are

R
∂

∂t
∇2φ1 = −λ2 ∂

2φ1

∂X2
+ ∇4φ1, (3.11a)

λ
∂u1

∂X
= ∇2p1. (3.11b)

We introduce an integration function F1(X, z, t) in order to satisfy (3.11b),

u1 = ∇2F1, p1 = λ
∂F1

∂X
. (3.12a,b)

Introducing (3.10b) and (3.12), (3.9a) and (3.10d) become

R
∂

∂t
∇2F1 = −λ2 ∂

2F1

∂X2
+ ∇4F1 − Rky ∂uc

∂z
φ1, (3.13a)

∂T1

∂t
= M−1∇2T1 + ∇2F1 − ky ∂Tc

∂z
φ1. (3.13b)

Equations (3.11a) and (3.13) govern φ1, F1 and T1, while the other core perturbation
variables are given by (3.9b), (3.9c), (3.10a), (3.10b), (3.10c), and (3.12). The boundary
conditions (3.5) and (3.6) become

φ1 = 0,
∂φ1

∂z
= 0, F1 = 0,

∂2F1

∂z2
= 0,

∂T1

∂z
= 0, at z = 0. (3.14a–e)

φ1 = 0,
∂2φ1

∂z2
+ kyT1 = 0, F1 = 0, (3.15a–c)

∂3F1

∂z3
− k2

y

∂F1

∂z
= 0,

∂T1

∂z
= 0, at z = 1. (3.15d,e)

Since u1 and p1 are uniquely defined, the F1 defined by (3.12) has an arbitrary additive
function

f1(t) exp(kyz) + f2(t) exp(−kyz), (3.16)

for any functions f1 and f2 of time. The boundary conditions (3.5d) and (3.6d) with
(3.9b) and (3.12b) imply that F1 equals an arbitrary function of time at z = 0 or at
z = 1. By setting these two functions of time equal to zero in (3.14c) and (3.15c), we
eliminate the homogeneous solution (3.16) and make F1 unique.

The Hartmann layers at x = ±L match any values of the tangential core velocities



Instabilities of dynamic thermocapillary liquid layers with magnetic fields 99

v and w, provided the core solution satisfies the Hartmann conditions (Walker et al.
1972),

u = ∓Ha−1

[
∂v

∂y
+
∂w

∂z

]
, (3.17a)

jx = ±Ha−1

[
∂v

∂z
− ∂w

∂y

]
at x = ±L, (3.17b)

where (3.17b) shows that the axial electric current density between a Hartmann layer
and the core is proportional to the axial core vorticity. The leading-order terms in
(3.17) for the core perturbation are

u1 = 0, jx1 = ±
[
∂v1

∂z
+ kyw1

]
, at X = ±1. (3.18a,b)

With (3.10a), (3.10b), (3.10c), and (3.12a), and with continuity of F1 at X = ±1 and
z = 0 or z = 1, (3.18) become

F1 = 0, λ
∂φ1

∂X
= ±∇2φ1, at X = ±1. (3.19a,b)

Since the jump in T1 is O(Ha−4) across the Hartmann layers,

T1 = 0 at X = ±1. (3.19c)

4. Numerical solution
The linear, transient and variable-coefficient partial differential equations that

govern the unknowns φ1, F1, and T1 for −1 6 X 6 1, 0 6 z 6 1 and t > 0 are
given by (3.11a), (3.13a), and (3.13b). These equations are subject to the boundary
conditions given by (3.14), (3.15), and (3.19). Since this boundary value problem is
homogeneous, we compute initial conditions for the perturbation variables. First we
replace (3.15e) with the condition T1 = 1 − X2 at z = 1, which satisfies (3.19c), and
then we solve the steady-state forms of (3.11a) and (3.13) with the rest of (3.14), (3.15)
and (3.19). This steady-state solution is used as the initial condition for each time
integration.

We discretize the system of equations in space by using the Chebyshev spectral
collocation method. We solve for the time-dependent unknown coefficients in the
double Chebyshev polynomial series in X and z, and we evaluate (3.11a) and (3.13)
at the Gauss–Lobotto collocation points. We use NX+ 1 collocation points in the X-
direction and NZ+1 collocation points in the z-direction. Grid-independent solutions
are achieved with NX = 8 for λ 6 8 or NX = 12 for 8 < λ 6 500, and with NZ = 8
for λ 6 8, NZ = 14 for 8 < λ 6 100, NZ = 16 for 100 < λ 6 300, NZ = 18 for
300 < λ 6 400, or NZ = 22 for 400 < λ 6 500. The total number of unknown
functions of time is NT = (NX + 1)× (3NZ + 7) or 279 and 949 unknown functions
for the smallest and largest values of λ considered here.

The time-dependent coefficients are integrated forward in time by the second-order-
accurate Crank–Nicholson scheme. We found that an incremental time-step size of
0.01 gave time-step-independent results over the range of λ considered.

Since R = Pr−1M, (3.11a) and (3.13) indicate that for a fixed value of Pr, the
independent parameters are λ, M and ky . We consider a response function of the
system G(λ;M, ky) as the difference in T1 at X = 0, z = 1 between two successive
maxima, i.e. separated by one complete period in time of the oscillation. We construct
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G from a time range that is much later than the initial transient of the system. For
each value of λ, we systematically search the M, ky space until we find the critical point
when G(λ; kyc,Mc) = 0 and ∂G/∂ky(λ; kyc,Mc) = 0, where kyc and Mc are the wave and
Marangoni numbers for the critical mode, respectively. The first condition, G = 0,
guarantees neutral stability, while the second condition, ∂G/∂ky = 0, guarantees the
minimum M along the G = 0 locus for a given value of λ.

The numerical technique we used to solve this problem is now described by
considering the contours of G in the (M, ky)-plane. We fix the value of λ and find
three points along the G = 0 locus by using a secant method (line search). For each of
the three line searches, ky is fixed and an M is found which gives |G| < δ, where δ is
our small convergence parameter. A parabola is then fitted to these three points and
has the functional form of M(ky). We calculate the minimum point of the parabola
and check to see if |G| < δ and |∂G/∂ky| < δ at this point. If these conditions are not
met then another line search is performed for the fixed ky of the new point. With four
points now identified on the G = 0 locus, one of the first three points is discarded by
selecting the neighbouring points of the newest point. We construct another parabola,
find the minimum of the parabola, and check for convergence again, etc. Typically 10
parabolic searches are required along with 7–10 function evaluations per line search
in order to satisfy a convergence parameter of δ = 10−4, which is the limit of accuracy
of the time-integration scheme for a time increment of 0.01. The total number of
function evaluations (time integrations) is approximately, neglecting initialization and
convergence checks, the product of the number of function evaluations for the line
search and the number of parabolic searches, i.e. 70–100 function evaluations are
required for each value of λ.

Our time-integration scheme represents an unusual way to find the critical normal
mode. In a normal-mode analysis, φ1, F1, and T1 would be replaced by the form

φ1(X, z, t) = Re[Φ(X, z) exp(−iαt)], (4.1)

where Φ = Φr + iΦi is the complex modal function and α has the same meaning as
the α in (1.7). For L = O(∞), the governing equations reduce to ordinary differential
equations in z, but for L = O(Ha), they reduce to partial differential equations in X
and z. The Chebyshev polynomials and Gauss–Lobatto collocation points in X and z
for a normal-mode analysis would be the same as those in our scheme. The normal-
mode analysis would reduce to an eigenvalue problem involving square matrices with
the dimensions NT × NT . Of the NT eigenvalues α, we are only interested in the
pair whose imaginary part first becomes non-negative as M is increased for each
value of ky . In our time-integration scheme, we choose an initial perturbation which
includes all the normal modes, and then we integrate in time until all the modes
with negative values of αi decay, leaving only the critical normal mode. The basic
algorithm for the normal-mode analysis is to find the NT complex eigenvalues, while
that for our scheme is to perform a time integration for a sufficiently long period
that all the modes have decayed except the critical one. For L = ∞, the normal-
mode analysis is obviously better, because the number of collocation points for the
ordinary differential equations is small and the number of eigenvalues is small. For
any two-dimensional modal functions for a finite geometry, the matrices are much
larger, so that the difference between the computational resources needed for the two
approaches is smaller. We do not claim that our approach is better than a normal-
mode analysis, but we do claim that it is equivalent. We chose this unusual approach
because it provides the framework for future direct numerical simulations of the full
nonlinear equations. We are only interested in one mode, namely the first mode to
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Figure 4. Typical oscillatory response in time of the perturbation temperature T1 at the centre
of the free surface X = 0 and z = 1. λ = 0, Pr = 0.1, k = 0.627, M = 20 (exponential decay),
Mc = 28.91, and M = 40 (exponential growth).

begin to grow exponentially as the Marangoni number is increased past its critical
value Mc. For M > Mc, several modes may be growing, and all growing modes are
easily identified in a normal-mode analysis, while a filter would be needed to sort
multiple modes in the present time-integration method. However, this paper does not
treat the supercritical behaviour for M > Mc.

In figure 4 we show a typical time-history response of the perturbation temperature
at the free surface taken at a point midway between the endwalls. The conditions
are λ = 0, Pr = 0.1, k = 0.627, yielding a neutrally-stable response to the system for
Mc = 28.91, and an exponentially decaying and growing response for M = 20 and
M = 40, respectively.

5. Results
In figure 5(a) we show the critical Marangoni number Mc as a function of λ for

the Prandtl number of molten silicon Pr = 0.0269 and for Pr = 0.1. For points
along either line, a small disturbance leads to a neutrally-stable three-dimensional
perturbation of the steady two-dimensional base flow, while above and below either
line, small disturbances grow and decay exponentially in time, respectively. For λ > 40,
the curves are linear and are given by Mc = 7.1λ and Mc = 11.8λ for Pr = 0.0269 and
Pr = 0.1, respectively, while for λ < 40, there is a nonlinear region which approaches
Mc = 11.67 and Mc = 28.91 as λ → 0 for Pr = 0.0269 and Pr = 0.1, respectively.
When λ→ 0, our results should match those of S & D. Since it is difficult to obtain
precise values from the stability curve in figure 17 of S & D, we reproduced their
analytic eigenvalue analysis with kx = 0. We found that their value of MS&D

c = 28.95
for Pr = 0.1, which is within 0.14% of our result as λ→ 0. This agreement is indicated
in the zoomed portion of figure 5a as the solid square on the Mc-axis which overlays
our result. Since their solution for L = ∞ is analytic and essentially exact, while
our numerical solution involves truncation errors in the spatial discretization and
time integration, this comparison provides an estimate of the error in our numerical
solution. The linear region of the curve represents a magnetically dominated flow
which is confined to a free-surface layer with an O(λ−1/2) thickness. We also show
the critical Marangoni number vs. Pr for a fixed value of λ = 100 in figure 5(b). At
λ = 100 the flow is magnetically dominated. Since R = M/Pr, the critical Reynolds
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Figure 5. Critical Marangoni number (a) Mc vs. λ for Pr = 0.0269 and 0.1 and
(b) Mc vs. Pr for λ = 100.
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Figure 6. Critical wavenumber (a) kyc vs. λ for Pr = 0.0269 and 0.1 and (b) kyc vs. Pr for λ = 100.

number Rc increases as the value of Pr is decreased from 0.1 to 0.01. With all physical
properties fixed except the thermal conductivity k, Pr decreases as k is increased, while
R is independent of k and proportional to the basic temperature gradient b. As k is
increased, thermal conduction carries more heat away from a hot spot or to a cold
spot, so that a stronger convective heat transfer, reflected in a larger value of Rc, is
needed to produce the instability.

The values of the critical-mode wavenumber kyc are plotted as a function of λ in
figure 6a. For λ > 40, there is a parabolic variation of kyc with kyc = 0.33λ1/2 or
kyc = 0.43λ1/2 for Pr = 0.0269 and Pr = 0.1, respectively. As λ→ 0 for Pr = 0.1, we
find kyc = 0.627, while kS&D

yc = 0.628, corresponding to a 0.16% error. We plot the
S & D result in figure 6(a) as the solid square at λ = 0. In figure 6(b), kyc is shown
to increase monotonically with Pr for a fixed value of λ = 100. S & D found that
the critical disturbance has the form of hydrothermal rolls propagating in a direction
which is nearly orthogonal to the (X, z)-plane for fluids with Pr 6 0.1. The length in
the y-direction of each hydrothermal roll is given by π/kyc, or 5.00 for S & D. When
magnetic damping is introduced, the y-length of the rolls decreases, i.e. kyc increases
with increasing λ. As noted previously, ∂u′/∂x is negligible in (3.1d), while (3.10b,c)
show that φ1 is a stream function for w1 and v1 in each X= constant plane. Therefore
the contours of φ1 sin(kyy) in any X= constant plane are the streamlines for v1 and
w1 in the hydrothermal waves. The contours in the X = 0 plane and at the time when
v1 is maximum are plotted in figure 7 for λ = 6 and λ = 200. Any axial variation of
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Figure 7. Contours of φ1 sin(kyy) at X = 0 for the time when v1 at z = 1 is maximum and for
Pr = 0.1. Solid lines are positive contours and dashed lines are negative contours. (a) λ = 6 and
(b) λ = 200.
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Figure 8. Critical non-dimensional circular frequency (a) fc vs. λ for Pr = 0.0269 and 0.1 and
(b) fc vs. Pr for λ = 100.

φ1 represents a change in the perturbation circulation in each x= constant plane, but
this variation is O(Ha−1) except inside the Hartmann layers at x = ±L. The contours
in figure 7(a) for Pr = 0.1 show that the y-length of each hydrothermal roll shrinks
from 5.00 to 3.45 as λ is increased from 0 to 6, but that the roll still extends through
the full depth of the layer, as does the base flow in figure 2(a). The contours in figure
7(b) for λ = 200 show that the hydrothermal waves are now confined to a free-surface
layer with an O(λ−1/2) thickness, just like the base flow in figure 3b. For λ = 200,
kyc = 6.08, so that the y-extent of each roll has shrunk to 0.517. We estimate the
z-extent of the hydrothermal waves for λ > 40 to be 3.0λ−1/2, so that the aspect ratio
(∆y/∆z) of each roll is (π/kyc)/(3.0λ

−1/2) = 2.4 for λ > 40. For λ < 40, the bottom
blocks vertical motion, so that the aspect ratio is 5.0 for λ = 0 and 3.5 for λ = 6.
Once the base flow and hydrothermal waves cease to be affected by the bottom wall,
the aspect ratio is 2.4 with both ∆y and ∆z decreasing as λ−1/2 with increasing λ.

In figure 8(a) the dimensionless circular frequency fc of the critical mode is plotted
as a function of λ. At λ = 0 and Pr = 0.1, fc = 0.053, which matches the value
we found from the analytical solution of S & D as indicated by the solid square at
λ = 0 in figure 8(a). As λ increases for Pr = 0.1, fc increases to a peak at λ = 15 and
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Figure 9. Contours of the perturbation velocities for Pr = 0.1 and λ = 200 at the time when
v1 at X = 0 and z = 1 is maximum. (a) v1 = −0.1i for i = 0 to 3, and v1 = 0.3i for i = 1 to 7.
(b) w1 = kyφ1 = 0.04i for i = 1 to 4. Hartmann layers match non-zero values of v1 and w1 at
X = ±1.

then decreases to a constant value of fc = 0.073 for λ > 40. As λ is increased, our
core for 0 6 z 6 1 splits into a central inviscid region near z = 0.5 and two parallel
layers with O(λ−1/2) thickness at z = 0 and z = 1. The two parallel layers just meet
at z = 0.5 for λ = 15. The interesting peak at λ = 15 for Pr = 0.1 corresponds to
the point when the two parallel layers begin to separate to leave an inviscid region
near z = 0.5. Once λ reaches 40, the perturbations in the central inviscid region and
bottom parallel layer have vanished, leaving only the perturbation in the top parallel
layer. A similar trend occurs for Pr = 0.0269, but for a larger value of λ. Figure 8(b)
indicates that the critical dimensionless circular frequency increases monotonically
with Pr.

In order to illustrate the axial variations in the hydrothermal waves, we plot
contours of v1(X, z, tv) and w1(X, z, tv) in figure 9, and the contours of T1(X, z, tT )
in figure 10 for Pr = 0.1, where v1 or T1 at X = 0 and z = 1 is maximum at
t = tv or t = tT < tv , respectively. The velocities in figure 9 may be interpreted as a
thermocapillary flow driven by the thermal field in figure 10, with a phase-lag of v1

and w1 behind T1 due to inertial effects. At t = tT and z = 1, T1 cos(kyy) is positive
and negative at y = 0 and y = π/ky , respectively, so that flow is driven along the free
surface from the hot line at y = 0 to the cold line at y = π/ky , producing the positive
values of v1 in figure 9(a) at y = π/2ky . The negative values of v1 in figure 9(a)
represent the return flow further from the free surface. The flow circuit is completed
by upward flow, which is represented by the positive values of w1 in figure 9(b) at
y = 0 and which carries the cold fluid in figure 2(b) to the free surface, and by an
equal downward flow near y = π/ky . Clearly at λ = 200, the symmetry of the velocity
contours indicates that the hydrothermal rolls travel in a direction orthogonal to the
base state, i.e. corresponding to kx = 0 for L = ∞.

The increase in Mc with increasing λ arises from the very small electric currents
which fringe from the Hartmann layers for long distances into the core. The hy-
drothermal waves of S & D for kx = 0 involve axial vorticity

ωx =
∂w

∂y
− ∂v

∂z
= ∇2φ. (5.1)

Equation (3.11a) indicates that the important terms in (3.3) are

R
∂ωx

∂t
= ∇2ωx +Ha2 ∂jx

∂x
, (5.2)
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Figure 10. Contours of T1 for λ = 200 and Pr = 0.1 and at the time when T1 at X = 0 and z = 1
is maximum: T1 = 4i for i = 1 to 4 and T1 = −0.4.
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Figure 11. Sketch of net radially outward electric current from an axial line along which axial
vorticity ωx is positive. The circulation is counterclockwise while the EM body force is clockwise.

while the Hartmann conditions (3.18b) are

jx = ∓Ha−1ωx, at x = ±L. (5.3)

Figure 9 shows that ωx is an even function of x. If ωx > 0 along some axial line
through some point in the (y, z)-plane, then jx is negative at x = L and positive
at x = −L, so that ∂jx/∂x is negative along this axial line. Equation (5.2) indicates
that electromagnetic effects accelerate the local decay of ωx. Since ∂jx/∂x < 0 along
this axial line, (3.1e) implies a net radially outward current from this axial line,
as illustrated in figure 11. The net radially outward electric current interacts with
the axial magnetic field êx to produce a clockwise EM body force opposing the
counterclockwise circulation in figure 11 for ωx > 0. If ωx > 0 for 0 6 y 6 π/ky ,
then ωx < 0 for π/ky 6 y 6 2π/ky , so that electric current leaves both Hartmann
layers for 0 6 y 6 π/ky , fringes through the core and returns to the Hartmann layers
for π/ky 6 y 6 2π/ky . Since ∂jx/∂x > 0 for π/ky 6 y 6 2π/ky , the net radially
inward electric currents here provide an EM body force opposing the local clockwise
circulation. Equation (5.3) shows that the axial currents created by the Hartmann
layers at x = ±L are O(Ha−1). Since the circuit for these Hartmann-layer currents is
spread over an entire O(Ha) length of the layer, the associated jy and jz are O(Ha−2).
Since the EM body force in the dimensionless momentum equation is multiplied by
Ha2, the EM damping or Joulean dissipation augments and is comparable to the O(1)
viscous dissipation.

The coupling of the axial vorticity ωx in the hydrothermal waves, the axial velocity
perturbation u′, and the temperature perturbation T ′ is qualitatively the same with
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Figure 12. Normalized time lag lv−T vs. λ for Pr = 0.0269 and Pr = 0.1.

or without magnetic damping, so that the discussion of S & D still applies here. Hot
and cold free-surface perturbation temperatures at y = 0 and y = π/ky accelerate
the local hydrothermal roll with ωx > 0. This roll convects cold and hot fluid to the
hot and cold free-surface positions, respectively, so that the free-surface temperature
perturbation is cancelled, but the hydrothermal roll continues because of inertia.
The continuing roll involves convective heat transfer which creates cold and hot
free-surface temperature perturbations at y = 0 and y = π/ky respectively. The
temperature perturbation continues to increase until the associated surface-tension
variation decelerates the hydrothermal roll to ωx = 0. The fluid is then stopped, but
free-surface temperature perturbation remains and now accelerates a hydrothermal
roll with ωx < 0 for the second half of each full period.

The lag lv−T is the normalized time lag given as the time difference tv− tt divided by
the time for a period of an oscillation. We plot lv−T vs. λ in figure 12. For Pr = 0.1,
lv−T = 0.065 at λ = 0 and increases to 0.099 for λ > 20. At λ = 20, the two O(λ−1/2)
thick parallel layers at z = 1 and z = 0 have separated, leaving an inviscid region in
the centre of the fluid layer. For λ = 0, the time lag between the peak velocity and
peak temperature is due to the flow overcoming the inertial effects as described by
Smith (1986), while for λ > 0, the lag naturally increases since the flow must now
overcome both the inertial effects and the magnetic body force.

Here and in S & D, the vertical velocity w1 in the hydrothermal roll produces a
perturbation of the axial velocity u1 due to vertical convection of the base-flow velocity
gradient, as reflected by w1∂uc/∂z in (3.9a). This u1 is too small to play a significant
role in the conservation of mass, i.e., in the circulation, but it does produce a significant
convective heat transfer since the axial derivative of the base-flow temperature is −1,
not O(Ha−1), as reflected by the −u1 term in (3.10d).

6. Conclusions
With a magnetic field parallel to the free surface of an electrically conducting fluid

layer in a slot, the unsteady thermocapillary convection that develops from a steady,
two-dimensional base state is damped by the magnetic body force. In the case of a slot
with an infinite aspect ratio, the magnetic field has no effect on the two-dimensional
base state and a very small effect on the three-dimensional perturbation of the base
state. Significant effects of the magnetic damping first occur when the aspect ratio
2L of the slot is reduced from infinity to O(Ha), where Ha is the large Hartmann
number. We characterized this effect with the parameter λ = Ha/L, by plotting the
critical Marangoni number, the wavenumber of the critical mode and the critical
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frequency as functions of λ for Pr = 0.026 and Pr = 0.1. For large λ, the critical
Marangoni number and critical wavenumber increase as λ and λ1/2, respectively, while
the critical frequency approaches a constant value. For large λ, both the base state
and the disturbance of the base state were confined to a thin free surface layer with
an O(λ−1/2) thickness.
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under Cooperative Research Agreement NCC8-90 and under a Graduate Research
Fellowship and by the National Science Foundation under Grant CTS94-19484.
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